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Dissipative self-organized branching in a dynamic population
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We study a locally nonconservative self-organized branching process (SOBP) in an open system of excitable
agents exhibiting spontaneous excitation and deexcitation. The SOBP achieves criticality even in the absence
of energy conservation as the population relaxes to a stable state with no overexcited agent. Criticality is
widely thought to happen only in a locally conservative SOBP. Our model explains the observed characteristic
size in the size distribution of tuna fish schools and the neuronal avalanches in cortical networks.
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INTRODUCTION

Self-organized criticality (SOC) is a powerful concept that
is now widely used to explain scaling phenomena in several
interesting physical systems. The sandpile model of Bak,
Tang, and Wiesenfeld [1] is the earliest implementation of
SOC. It stimulated research activity in both experiment (e.g.,
Oslo rice pile experiment [2], real sandpiles [3]) and theory
(e.g., critical exponents [1], SOC-generating rules [4-6)).
The role of energy conservation during dynamical exchanges
is essential to our understanding of how SOC emerges in a
system. The prevailing consensus seems that relaxation pro-
cesses toward SOC require local conservation at least on the
average.

Explorations of the possibility of SOC in nonconservative
models have remained relevant since locally nonconservative
self-organized synchronization is found in many important
real-world biological and social systems [7]. Recent ex-
amples are the coordinated cell-wide oscillations in the mi-
tochondrial energy state of heart cells [8], the synchronous
diving behavior of Adelie penguins (Pygoscelis adeliae) [9],
and the synchronization of opinion dynamics [10]. Synchro-
nization is achieved via self-organization and has been attrib-
uted to locally nonconservative mechanisms. Mitochondrial
networks achieve phase synchronization via the transport of
reactive oxygen species through lossy inner-membrane anion
channels [8].

The incorporation of any degree of dissipation into the
relaxation rules was demonstrated to lead to a subcritical
steady state where the power-law behavior of the avalanche
(size and lifetime) distributions is followed by a significant
drop-off at a characteristic size and duration [12]. An un-
stable active site relaxes with probability € by dissipating the
grains out of the system and the self-organized branching
process (SOBP) becomes critical only at e=0. SOC is there-
fore possible only in systems with a locally conservative
relaxation process.

In the Olami-Feder-Christensen (OFC) model, earth-
quakes are locally nonconservative, displaying SOC [5].
Criticality is deduced from the power law distribution of
earthquake intensities and analyzed by Broker and Grass-
berger [13] and Chabanol and Hakim [14]. They argued that
the mean-field OFC model could exhibit true criticality only
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in a conservative relaxation process. Carvalho and Prado [7]
sustained the claim after analyzing the branching rate of the
original OFC model. Thus, the issue of SOC without energy
conservation needs further study and elucidation.

Here, we demonstrate the possibility of SOC in a locally
nonconservative system of excitable agents whose “popula-
tion” dynamics unfolds by spontaneous excitation and deex-
citation. SOC is established by a matching condition between
the population dynamics and the relaxation process. It is
achieved even when the relaxation is locally
nonconservative—energy is gained from or dissipated to the
environment during population branching. Our model could
explain the observed size distribution of tuna fish schools.
The population dynamics described here is also consistent
with the synaptic background activity in cortical networks
[15] displaying neuronal avalanches during action potential
transmission [16].

SOBP IN A DYNAMIC POPULATION

Consider a system of excitable agents in a lattice with
open boundaries. The system with an inherent demographic
activity is constantly exposed to an external stimulus. Under
excessive stimulation, it relaxes by redistributing or dissipat-
ing the energy surplus, effectively synchronizing the behav-
ior of a certain number of agents. The relaxation is akin to
the Manna toppling rules [4] in an “infinite” lattice (mean-
field approximation). At an arbitrary time 7, an agent can be
in any of three mutually exclusive discrete states: under-
stimulated (US, state z=0), amply stimulated (AS, z=1), or
overstimulated (OS, z=2). An AS agent responds without
affecting others to an external stimulus, while an OS agent
responds by expending excess energy, subsequently exciting
either one or two other agents with probabilities 8 and «a,
respectively. In the latter case, the OS agent spends enough
excess energy to deexcite itself completely (z:2—0). In the
former, the OS agent deexcites only partially (z:2— 1). The
neighboring agent(s) that is excited by the OS agent is ran-
domly selected. We also allow the possibility (a+8<1) that
an OS agent can expend its excess energy to deexcite itself
completely without affecting any of its neighbors. The ex-
pended energy is dissipated out of the system in a manner
consistent with the dissipation mechanism reported in [12].

The population relaxes and relieves itself of the excess
energy from an initially OS agent by a series of agent deex-
citations over time. In a relaxed system, all agents are either
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US or AS only. An avalanche refers to a cluster of agents that
are synchronized behaviorally by a single stimulus, and the
avalanche size is equal to the cumulative number of excited
agents. Following the approach in [12], we impose a bound-
ary condition that puts an upper bound n to the number of
excitation events that occur during the system relaxation pro-
cess. The relaxation dynamics can be mapped to an equiva-
lent branching tree consisting of N=2"*'—1 nodes.

By interpreting the system as a population of excitable
agents, we can define a background demographic activity
that is driven by the spontaneous excitation of US agents and
deexcitation of AS agents. The stochastic background pro-
ceeds much more slowly than the relaxation dynamics
itself—a scheme resembling the time-scale separation in
forest-fire models but without the externally driven stochas-
tic background (e.g., lightning).

Let p=p(r) denote the fraction of AS agents and N the
total number of agents. Initially, the lattice is populated en-
tirely by US agents [p(0)=0]. At any later time, a US and an
AS agent are spontaneously excited and deexcited with prob-
ability 7 (z:0—1) and \ (z:1—0), respectively. Concur-
rently, an OS agent can emerge with a probability p (mean-
field approximation) due to the continuous flux of external
stimuli. OS agents are produced only from AS agents, i.e.,
z:1—2. A dynamical equation for p is

dp &(p.1)

5 = L= P) 1= ph+ Opian fn) + =0, (1)
where 0 is the relaxation term that considers the change in
the number of AS agents remaining after a relaxation or syn-
chronization event, and £/N denotes the fluctuations around
average values assumed to hold in the calculation of ©. The
noise term &/ N vanishes as the system size N increases. Fol-
lowing the analysis in [12], © is derived from the following
relation:

l—a-
NO(p;e,B.n) =1 _g(p)n_ﬁ
X@+ o) W) @

where o(p)=(2a+ B)p is the branching parameter, which has
a critical value of 1. Consequently, the critical value of p is
pe=Qa+p)".

We prove that, even without energy conservation, a sys-
tem can still display SOC. Local energy nonconservation is
implemented by allowing a+B<1. The coupling of the
background demographic stochasticity (N and 7) with the
branching relaxation dynamics (« and ) permits a noncon-
servative system to achieve criticality. We defined an ansatz
matching condition:

Nn=2a+B-1. (3)

The steady state of Eq. (1) is first studied at the fixed point
p=p". We show that the matching condition leads to a steady
state p“=p,. The first two terms of Eq. (1) add up to zero as
the third term ® — 0 at the matching condition where p,
=Qa+pB)" and p"=p,. The last term vanishes as N— .
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FIG. 1. (Color online) Plots of Ndp/dt (red, thick solid line),
Q(p) (green, solid line), and R(p) (blue, dashed line) vs density p of
AS agents: (a) a=0.3, 8=0.5, =2 A=2a+B-1)7; (b) a=1.0,
B=0.0, »=0. Curves intersect at p=p,.

Figure 1 plots the behavior of Ndp/dt vs p against the
critical constraint functions Q(p)=g*p>—4ap[1-(a+pB)p]
-2Bp+1, and R(p)=1-(2a+ B)p. Using the standard gener-
ating function approach [17], we derive a power law solution
to the recurrence relation and obtain a cluster size distribu-
tion P(s) of the form

b2s—-1)P(s—1)—a(s=2)P(s—2)

Pls)= s+1

(4)

The system is critical when p”=p,, implying that the Ndp/dt,
Q(p) and R(p) plots intersect at the origin only at p“=p,. A
locally nonconservative system (a=0.3, B=0.5) satisfies
such a condition if N/ 7 satisfies the matching condition [see
Fig. 1(a)]. For comparison, the corresponding case for a truly
conservative system is presented in Fig. 1(b). For a noncon-
servative system that is driven by a stochastic background,
the steady state becomes critical (p“=p,) only when the
spontaneous excitation rate 7 exceeds a threshold value 7.
Note that 7,,— 0 when n— .

Figure 2 illustrates a continuous phase transition from a
subcritical to a critical steady state for a nonconservative
system (@=0.55 and B8=0). Even if the relaxation dynamics
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FIG. 2. (Color online) Steady-state density p* of AS agents vs %
for different n (lattice size=2"*'-1, @=0.55, 8=0). System is sub-
critical if 7<<#,;, where 7,,— 0 with increasing n. Above 7=17,,

P =D

is inherently nonconservative, the threshold spontaneous ex-
citation rate steers the stochastic background that matches
the relaxation dynamics at N/ 7=0.1 and propels the system
toward SOC. The existence and necessity of 7, indicates a
nonlinear dependence of p* on 7.

We validate the predicted criticality by examining the
scaling properties of the cluster size distribution P(s) and the
relaxation time distribution P(7T). Figure 3 shows that both
obey a power law for a nonconservative system (a=0.3, 8
=0.5) satisfying Eq. (3) with 7> 7,,~2 for n=16 (case I).
On the other hand, scaling vanishes if 7< 7,, even when Eq.
(3) is satisfied (case II). It also vanishes when Eq. (3) is not
satisfied at all (case III).

We recall that, in forest-fire models, relaxation dynamics
is coupled with a stochastic background. However, the back-
ground source is external while the driving rates must satisfy
the double limits A, 7— 0 and N/ n— 0 to display criticality.
In our model, the stochastic background is inherent in the

P(s)

6

107 g 0 CaseIl
. Case III

0 F CaselV [3
sf H——- 1 | Case V

10" ¢

10° il s s sl s P

1 10 100

FIG. 3. (Color online) P(s) plots for nonconservative system
(n=16, 2'7 iterations, a=0.3, 8=0.5) with stochastic background:
7> 7, (D), p< 1, (II) where Eq. (3) is satisfied and (IIT) where Eq.
(3) is unsatisfied. Also shown is a conservative system (a=1, B
=0) with (IV) and without background (V).
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system while the driving rates only need to satisfy Eq. (3)
and 7> 7, for any system (conservative or nonconservative)
to display criticality.

CONSERVATIVE SOBP WITHOUT BACKGROUND

Ours is a generalization of the SOBP model of SOC. We
now show that it reduces consistently to a conservative sys-
tem in the absence of a stochastic demographic background.
We rewrite Eq. (3) in terms of p.=(2a+8)”', and obtain
N =p;'(1-p,). The background is then switched off by
letting A — 0 and 7— 0 simultaneously. The process leads to
the limit 1 -p.=~p.— 1/2, which is satisfied only if a=1 and
B=0. The result is exactly the same as the mean-field result
of [11]. The limit p.—1/2 is also evident in Fig. 2 as
n—0.

A conservative SOBP also corresponds to Eq. (4) with b
=0. The resulting analytic solution for P(s) holds only for
odd values of size s [18], because a grain is unable to leave
a toppling site (8=0). In contrast, our model enables a P(s)
solution to hold for all s values by allowing not only the
possibility that an OS agent deexcites completely (with prob-
ability @), but also the likelihood that it deexcites only par-
tially (with probability B).

Figure 3 plots the P(s) produced by our model for three
possible 7 values relative to 7, (cases I, II, and III) in a
stochastic background. Also shown is the corresponding per-
formance of a conservative system (a=1, 8=0) with (case
IV) and without (case V) background.

FISH SCHOOL SIZE SCALING

Bonabeau et al. [19] formulated a mean-field model of
animal aggregation (e.g., fish schools) that interplayed aggre-
gation and splitting. Fish schooling is an interesting manifes-
tation of avalanche dynamics in ecology [20,21]. Fishes ag-
gregate when searching for food, protecting themselves from
predators, or when migrating to more favorable habitats.

Our model could explain the behavior of the observed fish
school size distribution. At least for fish populations, we can
define an effective “excitation” rate » by accruing the change
due to actual birth and immigration, and an effective “deex-
citation” rate N\ that arises from actual death, emigration,
predation, and fish catch.

Two (or more) fish engaging in the same activity (e.g.,
foraging) trigger the rest of the population, eventually stimu-
lating a large number of other fishes to follow suit. Such
behavioral synchronization is a possible progenitor of
schooling [20]. Synchronization propagates like a wave
front, closely resembling an avalanche. Thus, fish schooling
may be interpreted as a relaxation process with a stochastic
demographic background. Allelomimesis is a possible cata-
lyzing biomechanism for synchronization. It is a possible
means for survival [22] and a suitable mechanism [23] for
scaling in different animal and human group size distribu-
tions [24]. Behavioral synchronization is naturally noisy
since fishes emigrate out of the school (to forage) or compete
and eliminate each other over a limited food resource.
Hence, the relaxation process as a means for behavioral syn-

045105-3



JUANICO, MONTEROLA, AND SALOMA

chronization is inherently nonconservative. Recently, we
showed that animals exhibit a strong tendency to copy con-
specific behavior [23,24], justifying the locally nonconserva-
tive nature of behavioral synchronization.

The tuna fish school size distribution P(s) behaves as a
power law with 7,=3/2 [19]. However, closer examination
reveals that P(s) also exhibits a characteristic scale with a
characteristic size. In Bonabeau et al.’s model, the truncation
of P(s) is attributed to a splitting parameter o which limits
the fish school lifetime due to break-up. Here, we attribute
the characteristic scale to a large A value owing, for instance,
to a rapid mortality rate due to (1) catch loss or predation
[N/ 7> 2a+B-1)], or (2) subthreshold spontaneous excita-
tion (at rate 7) that disables the capability of stochastic back-
ground to steer the relaxation process toward criticality.

Figure 4 compares the measured school size distribution
with the model prediction. The size distribution exhibits sub-
criticality due to the mismatch between the stochastic demo-
graphic background and the relaxation dynamics (i.e., N/ 7
=0.25>2a+B-1=0).

ENERGY NONCONSERVATION IN CORTICAL
NETWORKS

We also mention the experiments of Beggs and Plenz
[16], which reported the spreading of local field potential
activity in cortical networks reminiscent of SOC sandpile
avalanches. Vogels and Abbott [25], and Galarreta and Hes-
trin [26] showed that neural activity propagation does not
conserve the information content in action potentials. The
synchronization of a large number of firing neurons is not
possible unless an underlying background activity keeps the
network at the critical state.
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FIG. 4. Tuna fish school size distribution vs model prediction
(@=0.25, B=0.5, N/ 7=0.25). Exponential tail indicates subcritical-
ity due to high deexcitation probability (A=0.257).

We have described a locally nonconservative SOBP in a
dynamic population of excitable agents that could exhibit
spontaneous excitation and deexcitation. The SOBP could
achieve criticality even without energy conservation as the
population relaxes to a stable state. Until now, criticality is
widely thought to happen only in a locally conservative
SOBP. Our model explains the observed tuna fish school size
distribution including the existence of a characteristic size.
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